Name:

Aufgabe 1

Gegeben sei eine lineare Abbildung $\mathcal{F}: \mathbb{R}^n \longmapsto \mathbb{R}^m$, $x \in \mathbb{R}^n \longmapsto y = Ax \in \mathbb{R}^m$ mit

$$A = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 0 & 0 & 1 & 2 \\ 0 & 1 & 3 & 1 & 1 & 2 & 1 \\ 2 & 3 & 3 & -1 & -1 & 1 & 4 \\ 2 & 1 & -3 & -3 & -3 & -4 & 1 \end{array}\right)$$

bzgl. der Standardbasis Σ_e .

- a) n = ? m = ? und Rang(A) = ?
- b) dim(Kern(A)) =? Bestimmen Sie eine Basis für den Kern von A.
- c) dim(Bild(A)) = ? Bestimmen Sie eine Basis für das Bild von A.

Aufgabe 2

a) Wir betrachten den Vektorraum der Polynome vom Grad 3. Sind die gegebenen Polynome linear unabhängig bzw. linear abhängig? Sind Sie erzeugend?

a1)
$$\{1, 2x^2, x^2 + 2\}$$

a2)
$$\{4, 3x - 1, 2x^2 + 1, x^3 - 1\}$$

b) Gegeben ist der Vektorraum der Polynome vom Grad $2:P_2=span\left\{1,\,x,\,x^2\right\}$ auf dem Intervall $[-1,\,1]$ mit $(p,\,q)_k:\,P_2\times P_2\longrightarrow \mathbb{R}$, wobei

$$(p, q)_1 := \int_{-1}^{1} p'(x)q'(x) dx$$

$$(p, q)_2 := p(0) \cdot q(0) + \frac{1}{2} \int_{-1}^{1} p'(x)q'(x) dx$$

$$(p, q)_3 := p(0) \cdot q(0) + p'(0) \cdot q'(0) + p''(x) \cdot q''(x)$$

- b1) welches der definierten Produkte $(p, q)_k$ ist ein Skalarprodukt?
- b2) Geben Sie die Matrix der Werte $(x^i, x^j)_k$, i, j = 0, 1, 2 und k = 1, 2, 3 an, d.h. $(x, y)_k = x^T A_k y$

Aufgabe 3

Gegeben sind die drei Basen

$$\Sigma_b:\ b_1=\left(\begin{array}{c}1\\1\end{array}\right)\ b_2=\left(\begin{array}{c}2\\3\end{array}\right) \qquad \Sigma_c:\ c_1=\left(\begin{array}{c}3\\0\end{array}\right)\ c_2=\left(\begin{array}{c}-2\\-1\end{array}\right) \qquad \Sigma_e:\ e_1=\left(\begin{array}{c}1\\0\end{array}\right)\ e_2=\left(\begin{array}{c}0\\1\end{array}\right)$$

- a) Geben Sie die Transformation T_{eb} von Σ_e nach Σ_b , d.h. $\Sigma_e \longrightarrow \Sigma_b$ an.
- b) Geben Sie die Transformation T_{ec} von Σ_e nach Σ_c , d.h. $\Sigma_e \longrightarrow \Sigma_c$ and
- c) Geben Sie die Transformation T_{bc} von Σ_b nach Σ_c , d.h. $\Sigma_b \longrightarrow \Sigma_c$ an. (Tipp: Umweg über Σ_e)
- d) Gegeben sind die Vektoren $\overrightarrow{0P} = \left(\begin{array}{c} 1 \\ 2 \end{array}\right)_e$ bzgl. Σ_e und $\overrightarrow{0Q} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)_b$ bzgl. Σ_b . Gesucht sind diese Vektoren bzgl. der anderen Basen.

Aufgabe 4

Betrachten Sie die implizite Mittelpunktregel

$$k_1 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}k_1) \tag{1}$$

$$y_{k+1} = y_k + h \, k_1 \tag{2}$$

- a) Bestimmen Sie das Stabilitätsgebiet dieser Methode.
- b) Betrachten Sie das folgende Anfangswertproblem:

$$\ddot{x} + \omega^2 x = 0$$
$$x(0) = \alpha$$
$$\dot{x}(0) = \beta$$

Bestimmen Sie für dieses Problem mit Hilfe von a) die Schrittweiten h so, dass die Methode stabil wird. Feststellung?.

Aufgabe 5

Betrachten Sie das Differentialgleichungssystem y'=Ay für $y\in\mathbb{R}^3$ mit

$$A = \begin{pmatrix} -\frac{1}{2} & 32.6 & 35.7 \\ 0 & -48 & 9 \\ 0 & 9 & -72 \end{pmatrix} \quad \text{und den Anfangsbedingungen:} \quad y(0) = \begin{pmatrix} 4 \\ 13 \\ 1 \end{pmatrix}$$

- a) Lösen Sie dieses System mit Hilfe des EWP von A, (EW und EV exakt).
- b) Zur numerischen Lösung dieses Systems soll das klassische RK-Verfahren

verwendet werden. Es soll 4- stellige Genauigkeit erreicht werden. Wie müssen die Schrittweiten gewählt werden?

Aufgabe 6

Gegeben ist die folgende Differentialgleichung

- a) Schreiben Sie die gegebene Differentialgleichung 3—ter Ordnung als lineares System $\dot{z}=Az$ von Differentialgleichungen erster Ordnung.
- b) Approximieren Sie z(h) mit der Trapezmethode für h=0.5.

Lösung 1

a) $n=7,\ m=4,\ Rang(A)=r=3$ mit Gauss-Algorithmus Endschema:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	1
(1)	2	3	0	0	1	2	0
	(1)	3	1	1	$\underline{2}$	1	0
					1	1	0
							.

b) dim(Kern(A))=4=n-r= Anzahl freie Parameter,nämlich: $x_7=\mu_1$, $x_5=\mu_2$, $x_4=\mu_3$ und $x_3=\mu_4$, also $x=\mu_4b_4+\mu_3b_3+\mu_2b_2+\mu_1b_1$, wobei

$$b_4 = \begin{pmatrix} 6 \\ -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad b_3 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad b_1 = \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \mu_4 \begin{pmatrix} 6 \\ -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \mu_3 \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \mu_2 \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

 $Kern(A) = span \{b_1, b_2, b_3, b_4\}$

c) dim(Bild(A)) = r = 3 Pivot-Spalten spannen das Bild von A auf: $Bild(A) = span\left\{a^{(1)},\,a^{(2)},\,a^{(6)}\right\}$, wobei

$$a^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix} \qquad a^{(2)} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix} \qquad a^{(6)} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ -4 \end{pmatrix}$$

Lösung 2

- a) a1) Die drei gegebenen Polynome sind linear abhängig, nicht erzeugend.
 - a2) Die gegebenen Polynome sind linear unabhängig, erzeugend.
- b) $(p,\,q)_1$ ist kein Skalarprodukt, da für $p\equiv 1$ ist p'(x)=0 und somit $(p,\,p)_1=0$ obwohl $p\neq 0$ $(p,\,q)_2$ und $(p,\,q)_3$ sind Skalarprodukte: positiv definit und symmetrisch

$$A_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8/3 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4/3 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

bei A_1 ist positiv definit verletzt

Lösung 3

a)

$$T_{eb} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$T_{ec} = \left(\begin{array}{cc} 3 & -2 \\ 0 & -1 \end{array}\right)$$

c)
$$T_{bc}: \Sigma_b \xrightarrow{T_{eb}^{-1}} \Sigma_e \xrightarrow{T_{ec}} \Sigma_c$$
, also

$$T_{bc} = T_{eb}^{-1} T_{ec} = \begin{pmatrix} 9 & -4 \\ -3 & 1 \end{pmatrix}$$

$$T_{eb}^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \qquad T_{ec}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & -3 \end{pmatrix}$$

$$\overrightarrow{OP} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}_b = T_{eb}^{-1} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}_e \overrightarrow{OP} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}_c = T_{ec}^{-1} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}_e \text{ und}$$

$$\overrightarrow{OQ} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}_e = T_{eb} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}_b \overrightarrow{OQ} = \begin{pmatrix} -5/3 \\ -12/3 \end{pmatrix}_c = T_{ec}^{-1} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix}_e$$

Lösung 4

a)
$$y'=\lambda y$$
 und somit $k_1=\lambda\left(y_k+\frac{h}{2}\,k_1\right)=\lambda y_k+\frac{h\lambda}{2}\,k_1$, also

$$k_1 = \frac{1}{1 - \frac{h\lambda}{2}} \lambda y_k \qquad y_{k+1} = \frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}} \cdot y_k$$

 $\operatorname{mit} z := h\lambda$ erhält man schliesslich

$$R(z) = \frac{2+z}{2-z}$$

Stabilitätsgebiet: |R(z)| < 1, was für $\Re(z) < 0$ erfüllt ist, d.h. die Methode ist absolut stabil.

b)
$$A = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix}$$
. $det(A - \lambda I_2) = \lambda^2 + \omega^2 = 0$, somit $\lambda_{1.2} = \pm j\omega$ rein imaginär. $h\lambda \in \Im(z)$, bzw. $\Re(h\lambda) = 0$! Methode funktioniert trotzdem, obwohl $|R(z)| = 1$!

Lösung 5

a) EWP von A: $\lambda_1=-\frac{1}{2}$, $\lambda_2=-45$ und $\lambda_3=-75$ zugehörige EV:

$$v^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad v^{(2)} = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} \qquad v^{(3)} = \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$$

und somit: allgemeine Lösung:

$$y_h(x) = c_1 e^{\lambda_1 x} \cdot v^{(1)} + c_2 e^{\lambda_2 x} \cdot v^{(2)} + c_3 e^{\lambda_3 x} \cdot v^{(3)}$$

Bestimmung der c_k mit den AB: $c_1 = 15$, $c_2 = 4$ und $c_3 = -1$ und schliesslich:

$$y(x) = 15 \cdot e^{(-1/2x)} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 4 \cdot e^{(-45x)} \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} - e^{(-75x)} \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$$

b) Anfangsschrittweite $h_1: F(h\lambda):=1+(h\lambda)+\frac{(h\lambda)^2}{2!}+\frac{(h\lambda)^3}{3!}+\frac{(h\lambda)^4}{4!}$ muss mit $e^{(-75h_1)}$ 5- stellig übereinstimmen! $\left|\frac{h_1^5(-75)^5}{5!}\right|<5\cdot 10^{-6} \qquad \text{Restglied der Taylorreihe}$

Diese Schrittweite h_1 muss solange verwendet werden, bis $e^{(-75h_1)n_1}$ klein genug, d.h. $e^{(-75h_1)n_1} < 5 \cdot 10^{-6}$, also $h_1 = 0.0030239...$ und $h_1 = 54$ und somit $h_1 = 0.172929...$

Ab x_1 darf eine Schrittweite $h_2>h_1$ verwendet werden: obige Überlegung muss nun mit $e^{(-45h_2)}$ gelten. Hier wird $h_2=0.005039...$ und $n_2=54$ und damit $x_2=n_2h_2=0.2721...$

Ab x_1+x_2 darf eine Schrittweite $h_3>h_2$ verwendet werden: obige Überlegung muss nun mit $e^{(-0.5h_3)}$ gelten. Dies ergäbe $h_3=0.4535...$ was aber im Widerspruch zur Stabilität wäre, $\mu=h_3(-75)\notin\mathbb{S}$ (da immer das ganze System integriert wird, *keine* Entkopplung).

Die maximal mögliche Schrittweite muss

$$-2.78 < h(-75) < 0$$

erfüllen, also 0 < h < 0.037

Lösung 6

a) Sei $z_1:=y$, $z_2:=\dot{y}$ und $z_3:=\ddot{y}$: damit erhalten wir

$$\dot{z} = Az$$
 mit $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -3 & -1 \end{pmatrix}$

b) Trapezmethode: $z(h) - z(0) = \frac{h}{2} \ (A \cdot z(0) + A \cdot z(h))$, wir haben ein *lineares* System!

$$z(h) = \left(I_3 - \frac{h}{2}A\right)^{-1} \left(I_3 + \frac{h}{2}A\right) \cdot z(0)$$

wobei

$$\left(I_3 - \frac{h}{2}A\right)^{-1} = \frac{1}{\det(I_3 - \frac{h}{2}A)} \begin{pmatrix} 1 + \frac{h}{2} + \frac{3h^2}{4} & \frac{h}{2} + \frac{h^2}{4} & \frac{h^2}{4} \\ \frac{5h^2}{4} & 1 + \frac{h}{2} & \frac{h}{2} \\ \frac{5h}{2} & -\frac{3h}{2} + \frac{5h^2}{4} & 1 \end{pmatrix}$$

mit $det(I_3 - \frac{h}{2}A) = 1 + \frac{h}{2} + \frac{3h^2}{4} - \frac{5h^3}{8}$.

$$h = \frac{1}{2} : \left(I_3 - \frac{h}{2}A\right)^{-1} = \frac{1}{87} \begin{pmatrix} 92 & 20 & 4\\ 20 & 80 & 16\\ 80 & -28 & 64 \end{pmatrix} \text{ und } \left(I_3 + \frac{h}{2}A\right) = \frac{1}{4} \begin{pmatrix} 4 & 1 & 0\\ 0 & 4 & 1\\ 5 & -3 & 3 \end{pmatrix} \text{ und somit}$$

$$z(0.5) = \frac{1}{87} \begin{pmatrix} 92 & 20 & 4 \\ 20 & 80 & 16 \\ 80 & -28 & 64 \end{pmatrix} \cdot \frac{1}{4} \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 5 & -3 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ \frac{1}{2} \end{pmatrix} = \frac{1}{29} \begin{pmatrix} -31 \\ -8 \\ -93 \end{pmatrix} \simeq \begin{pmatrix} -1.0690 \\ -0.2759 \\ -1.6034 \end{pmatrix}$$