	Name:
--	-------

Aufgabe 1

Ein Massenartikel wird auf drei Maschinen M_1 , M_2 und M_3 produziert. 50% der Produktion stammt von M_1 , 30% von M_2 und der Rest von M_3 .

Maschine M_1 liefert 10% Ausschuss, Maschine M_2 5% und Maschine M_3 2%.

- a) Mit welcher Wahrscheinlichkeit ist ein zufällig aus der Gesamtproduktion gewählter Artikel brauchbar ?
- b) Ein defekter Artikel wurde erwischt. Mit welcher Wahrscheinlichkeit stammt er von Maschine M_1 ?
- c) Wie gross ist die Wahrscheinlichkeit, dass dieser defekte Artikel nicht von Maschine M_2 stammt?

Tipp: Verwenden Sie das Ereignis S := Ausschuss.

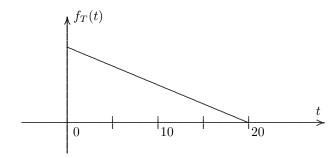
Aufgabe 2

Nach den Aussagen einer Personalleiterin gibt es unter den Bewerbern für eine Manager-Position nur 7% mit wirklicher "Leadership Quality".

- a) Wieviele Bewerber müsste ein Headhunter durchleuchten, um mit Wahrscheinlichkeit 0.95 mindestens einen Bewerber mit wirklichen Führungsqualitäten dabei zu haben?
- b) Wie gross ist die Wahrscheinlichkeit, dass es unter dieser Anzahl genau drei geeignete Manager gibt?

Aufgabe 3

In der Stadt Zürich gibt es bekanntlich viele Baustellen. Die Dauer T der Arbeiten bei einer Baustelle liege zwischen 0 und 20 Wochen.



Die Dichte $f_T(t)$ habe nebenstehende Form.

- a) Bestimmen Sie $f_T(t)$.
- b) Berechnen Sie die Wahrscheinlichkeit, dass die Bauzeit T zwischen 5 und 10 Wochen beträgt.
- c) Bestimmen Sie den Erwartungswert und den Median von T.

Aufgabe 4

Zwei Personen wollen zu einem je zufällig gewählten Zeitpunkt zwischen 14.00 Uhr und 15.00 Uhr am gleichen Ort ankommen. Falls eine ankommende Person die andere nicht trifft, soll sie z Minuten, jedoch höchstens bis 15.00 Uhr warten.

- a) Bestimmen Sie ein geeignetes Modell.
- b) Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich die beiden Personen treffen.

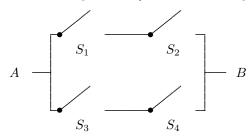
Aufgabe 5

Der Lipoidphosphor-Gehalt X im Blutplasma Erwachsener wird als normalverteilt mit Erwartungswert $\mu=99.8$ [mg/l] und Standardabweichung $\sigma=15.2$ [mg/l] angenommen.

- a) Wie gross ist die Wahrscheinlichkeit, dass der Lipoidphosphor-Gehalt X zwischen $84.6~[\mathrm{mg/I}]$ und $130.2~[\mathrm{mg/I}]$ liegt?
- b) Bestimmen Sie die Konstante c so, dass 99% der Erwachsenen einen Lipoidphosphor-Gehalt kleiner c haben.

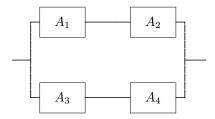
Aufgabe 6

a) Berechnen Sie die Wahrscheinlichkeit dafür, dass Strom von A nach B fliesst, unter der Voraussetzung, dass die Ereignisse G_i (= Schalter S_i ist geschlossen) alle unabhängig sind.



Es sei $P(G_1) = \frac{1}{2}$, $P(G_2) = P(G_4) = \frac{2}{3}$ und $P(G_3) = \frac{3}{4}$.

b) Bestimmen Sie die Zuverlässigkeit Z (= Wahrscheinlichkeit für Funktionsfähigkeit) des folgenden Systems:



wobei das Ereignis $A_k =$, k- te Komponente funktioniert". Die zugehörige Wahrscheinlichkeit ist $P_k = P(A_k) = p$, 0 für alle Komponenten. Die Komponenten funktionieren unabhängig voneinander.

Für welche Werte von p gilt: i) Z(p) < p, für welche p gilt: ii) Z(p) > p

Lösung 1

a)
$$P(S^c) = P(M_1) \cdot P(S^c|M_1) + P(M_2) \cdot P(S^c|M_2) + P(M_3) \cdot P(S^c|M_3) = 0.931$$

b)
$$P(M_1|S) = \frac{P(M_1 \cap S)}{P(S)} = \frac{P(M_1) \cdot P(S^c|M_1)}{P(S)} = \frac{0.5 \cdot 0.1}{1 - 0.931} = 0.724638$$

c)
$$P(M_2|S)=\frac{P(M_2\cap S)}{P(S)}=\frac{P(M_2)\cdot P(S^c|M_2)}{P(S)}=\frac{0.3\cdot 0.05}{1-0.931}=0.217391$$
, also $P(M_2^c|S)=1-0.21...=0.7826..$

Lösung 2

$$p = 0.07 \ {\rm und} \ q = 1 - p = 0.93$$

- a) Gegenwahrscheinlichkeit: kein Bewerber mit den verlangten Qualitäten: $(0.93)^n$ und somit $1-(0.93)^n \geq 0.95 \Rightarrow (0.93)^n \leq 0.05$ und damit $n \geq \frac{\log{(0.05)}}{\log{(0.93)}} = 41.28$, also mindestens n=42 Kandidaten
- b) $\binom{n}{3}p^3\cdot q^{n-3}=\binom{42}{3}(0.07)^3\cdot (0.93)^{n-3}=2.3231e-001,$ d.h. mit 2.3%- iger Wahrscheinlichkeit.

Lösung 3

a)
$$\int\limits_{-\infty}^{\infty} f_T(t)\,dt = \int\limits_{0}^{20} f_T(t)\,dt \stackrel{!}{=} 1 \Rightarrow$$
 Achsenabschnitt von $f_T(t)$ muss 0.1 sein und damit

$$f(t) = \begin{cases} 0.1 - \frac{0.1}{20} t & \text{falls} \quad 0 \le t \le 20 \\ 0 & \text{sonst} \end{cases}$$

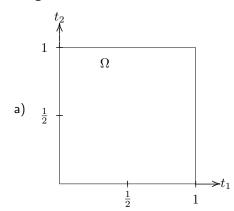
b)
$$P(5 \le T \le 10) = \int_{5}^{10} f_T(t) dt = \left(0.1 \cdot t - \frac{0.1}{20} \cdot \frac{t^2}{2}\right) \Big|_{5}^{10} = 0.3215$$

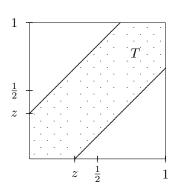
c)
$$\mu = E(T) = \int_{0}^{20} t \cdot f_T(t) dt = \left(0.1 \cdot \frac{t}{2} - \frac{0.1}{20} \cdot \frac{t^3}{3}\right) \Big|_{0}^{20} = \frac{40}{3}$$

Median:
$$0.5 = \int_{0}^{t} f_T(\tau) d\tau = F(t) = 0.1 \cdot t - \frac{0.1}{20} \cdot \frac{t^2}{2} \Rightarrow t^2 - 40t + 200 = 0$$

mit den Lösungen $t_{1.2}=20\pm10\,\sqrt{2}$, wobei nur $t=20-10\,\sqrt{2}$ in Frage kommt, da t<20 erfüllt sein muss.

Lösung 4





 $t_1={\sf Zeit}$, in Stunden, die verstrichen ist, seit 14.00 Uhr bis zur Ankunft von Person 1. $t_2={\sf Zeit}$, in Stunden, die verstrichen ist, seit 14.00 Uhr bis zur Ankunft von Person 2.

Annahme: es liegen sogenannte geometrische Wahrscheinlichkeiten vor, d.h. die Flächeninhalte sind proportional zu den Wahrscheinlichkeiten: $P(A) = k \cdot F(A)$

b) das interessierende Ereignis: $T:=\Big\{(t_1,\,t_2)\Big||t_1-t_2|\leq z\Big\},\,0< z<1$ $P(\Omega)=k\cdot F(\Omega)=1\Longrightarrow k=1 \text{ und somit } P(T)=1\cdot F(T)=2z-z^2$

Lösung 5

 $Z = \frac{X - \mu}{\sigma}$

a) $P(84.8 \le X \le 130.2) = \Phi(z_{oben}) - \Phi(z_{unten}),$ wobei $z_{oben} = \frac{130.2 - 99.8}{15.2} = 2$ und $z_{unten} = \frac{84.6 - 99.8}{15.2} = -1$ also $P(84.8 \le X \le 130.2) = \Phi(2) - \Phi(-1) = \Phi(2) - (1 - \Phi(1)) = \Phi(2) + \Phi(1) - 1 = 0.9772 + 0.8413 - 1 = 0.81850$

b) $\Phi(z)=0.99 \Rightarrow z=2.3267$ mit linearer Interpolation. Damit erhalten wir für $c=z\cdot\sigma+\mu=135.17$ [mg/l]

Lösung 6

a) $S = \text{es fliesst Strom. } S = (G_1 \cap G_2) \cup (G_3 \cap G_4) \stackrel{deMorgan}{=} ((G_1 \cap G_2)^c \cap (G_3 \cap G_4)^c)^c$, also $P(S) = 1 - (1 - P(G_1) \cdot P(G_2)) \cdot (1 - P(G_3) \cdot P(G_4)) = \frac{2}{3}$

b) $S = \text{System funktioniert.} \ S = (A_1 \cap A_2) \cup (A_3 \cap A_4) \stackrel{deMorgan}{=} ((A_1 \cap A_2)^c \cap (A_3 \cap A_4)^c)^c$, also $Z(p) = P(S) = 1 - (1 - p^2) \cdot (1 - p^2) = 2p^2 - p^4$.

i)
$$Z(p) - p = p(1-p)(p^2 + p - 1) < 0 \implies 0 < p < \frac{\sqrt{5}-1}{2}$$

ii)
$$Z(p) - p = p(1-p)(p^2 + p - 1) > 0 \implies \frac{\sqrt{5}-1}{2}$$