Name:

Aufgabe 1

a) Gesucht ist eine Matrix A so, dass

$$A \cdot \left(\begin{array}{cc} 2 & 2 \\ 2 & 4 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$$

Wie viele Lösungen gibt es?

b) Gegeben ist ein Spaltenvektor $d=\left(\begin{array}{c}2\\1\\z\end{array}\right)$.

Gesucht ist z>0 so, dass $d^Td=21$. Bestimmen Sie anschliessend $A=d^T(d\,d^T)d$. Was ist A für eine Matrix?

Aufgabe 2

a) Bestimmen Sie x und z so, dass die Punkte A(5,-6,-1), B(-7,-3,2) und C(x,5,z) auf einer Geraden liegen.

b) Gegeben sind die Vektoren
$$\vec{a}=\left(\begin{array}{c}1\\-3\end{array}\right)$$
, $\vec{b}=\left(\begin{array}{c}2\\4\end{array}\right)$, $\vec{c}=\left(\begin{array}{c}-3\\1\end{array}\right)$ und $\vec{d}=\left(\begin{array}{c}-2\\1\end{array}\right)$. Bestimmen Sie μ so, dass $3\vec{a}-\frac{1}{2}\,\vec{b}+2\vec{c}-3\vec{d}$ und $\left(\begin{array}{c}\mu\\1\end{array}\right)$ linear abhängig sind.

Aufgabe 3

In einem Quadrat ABCD liegt der Punkt E auf BC und der Punkt F auf CD so, dass $\overline{CE}=\frac{1}{4}\,\overline{CB}$ und $\overline{DF}=\frac{1}{2}\,\overline{DC}$.

Die Geraden g=g(A,E) und h=h(B,F) schneiden sich in G. Welche Bruchteile machen die Strecken \overline{AG} und \overline{GF} von \overline{AE} bzw. \overline{BF} aus?

Aufgabe 4

Gegeben ist das lineare Gleichungssystem

$$\begin{cases} x_1 + ax_2 + bx_3 = 2\\ x_1 + 2ax_2 + bx_3 = 2 + a\\ -x_1 + ax_2 - x_3 = 2a - 1 - b \end{cases}$$

- a) Für welche Werte von $a \in \mathbb{R}$ und $b \in \mathbb{R}$ hat die Lösungsmenge zwei freie Parameter?
- b) Für welche Werte von $a \in \mathbb{R}$ und $b \in \mathbb{R}$ ist die Lösungsmenge von der Form, (alle Möglichkeiten)

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix} + \mu \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix} \qquad \mu \in \mathbb{R}$$

c) Wann gibt es genau eine Lösung?

Geben Sie in den Fällen a) und b) die Lösungen an, geometrische Interpretation.

Aufgabe 5

Gesucht ist eine Parameterdarstellung der Schnittgeraden der Ebene E_1 : x-2y+z=0 mit der Ebene $E_2=E_2(A,B,C)$, wobei A(2,3,1), B(-3,0,2) und C(1,2,3).

Aufgabe 6

Gegeben sind
$$\sum_{j=0}^{19} (4x_{j+1} - 2) = 0$$
 und $\sum_{j=2}^{21} (2x_{j-1} - 1)^2 = 0$

Gesucht ist die Summe
$$s = \sum_{k=-1}^{18} \left\{ 2x_{k+2} + (-3) \cdot \sum_{i=4}^{23} (-x_{i-3} + 1)^2 \right\}$$

- a) $A = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$
- b) z=4, $A=(d^Td)\cdot(d^Td)=21^2=441$ (Assoziativgesetz der Matrizenmultiplikation), A ist ein Skalar, d.h. eine $1\times 1-$ Matrix.

Lösung 2

- a) $\vec{a} = \mu \cdot \vec{b}$, wobei $\vec{a} = \overrightarrow{AB} = \begin{pmatrix} -12 \\ 3 \\ 3 \end{pmatrix}$ und $\vec{b} = \overrightarrow{AC} = \begin{pmatrix} x-5 \\ 11 \\ z+1 \end{pmatrix} \Longrightarrow \mu = \frac{3}{11}$ und damit x = -39 und z = 10.
- b) $3\vec{a} \frac{1}{2}\vec{b} + 2\vec{c} 3\vec{d} = \begin{pmatrix} 2 \\ -12 \end{pmatrix} = \nu \begin{pmatrix} \mu \\ 1 \end{pmatrix} \Longrightarrow \nu = -12$ und somit $\mu = -\frac{1}{6}$.

Lösung 3

Mit $\vec{a} = \overrightarrow{AB}$ und $\vec{b} = \overrightarrow{AD}$ haben wir $\overrightarrow{AE} = \vec{a} + \frac{3}{4}\vec{b}$ und $\overrightarrow{BF} = -\frac{2}{3}\vec{a} + \vec{b}$ und schliesslich

$$\vec{a} + \overrightarrow{BG} + \overrightarrow{GA} = \vec{0} \qquad \vec{a} + \mu \, \left(-\frac{2}{3} \, \vec{a} + \vec{b} \right) + \nu \, \left(\vec{a} + \frac{3}{4} \, \vec{b} \right) = \vec{0} \qquad \left(1 - \frac{2}{3} \, \mu + \nu \right) \, \vec{a} + \left(\mu + \frac{3}{4} \, \nu \right) \, \vec{b} = \vec{0}$$

Da \vec{a} und \vec{b} linear unabhängig, liefert der Koeffizientenvergleich: $\mu=\frac{1}{2}$, $\nu=-\frac{2}{3}$, also $\frac{\overline{BG}}{\overline{BF}}=\frac{1}{2}$ und $\frac{\overline{AG}}{\overline{AE}}=\frac{2}{3}$.

Lösung 4

a) a=0 und b=1: $x_2=\mu$, $x_3=\nu$ und $x_1=2-\nu$, also

(1)
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \nu \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

geometrisch: drei zusammenfallende Ebenen, wobei (1) eine Parameterdarstellung der Ebene $E:\ x_1+x_3=2$ ist. E ist dritt-projizierend, d.h. parallel zur x_2- Achse.

b) $a \neq 0$ und b = 1: $x_3 = \mu$, $x_2 = 1$ und $x_1 = 2 - a - \mu$, also

(2)
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2-a \\ 1 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad \mu \in \mathbb{R}$$

geometrisch: drei Ebenen, die sich in einer Geraden g schneiden, wobei (2) eine Parameterdarstellung von g ist.

oder

a = 0 und $b \neq 1$: $x_3 = -1$, $x_2 = \mu$ und $x_1 = 2 + b$, also

(3)
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2+b \\ 0 \\ -1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \mu \in \mathbb{R}$$

geometrisch: drei Ebenen, die sich in einer Geraden g schneiden, wobei (3) eine Parameterdarstellung von g ist.

c) $a \neq 0$ und $b \neq 1$:

geometrisch: drei Ebenen, die sich in einem Punkt S schneiden. $S(2-a+b,\,1,\,-1)$

Lösung 5

Parameterdarstellung von E_2 und daraus anschliessend eine Koordinatengleichung:

$$E_2: \quad \vec{r} = \overrightarrow{0A} + \mu \vec{a} + \nu \vec{b} \qquad \text{wobei} \quad \vec{a} = \overrightarrow{AB} = \begin{pmatrix} -5 \\ -3 \\ 1 \end{pmatrix} \quad \vec{b} = \overrightarrow{AC} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

Elimination von μ und ν liefert:

$$E_2: \quad 5x - 9y - 2z = -19$$

Schnittgerade $g = E_1 \cap E_2$ mit dem Gauss-Algorithmus:

Endschema:

$\stackrel{x}{}$	y	z	1
(1)	0	-13	-38
	1	-7	-19

also
$$g: \vec{r} = \begin{pmatrix} -38 \\ -19 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 13 \\ 7 \\ 1 \end{pmatrix}$$
, $\mu \in \mathbb{R}$

Lösung 6

Aus den gegebenen Gleichungen erhalten wir:

$$\sum_{j=1}^{20} x_j = 10 \quad \text{und} \quad \sum_{j=1}^{20} x_j^2 = 5$$

einsetzen in

$$s = \sum_{k=1}^{20} \left(2x_k - 3 \cdot \sum_{i=1}^{20} (-x_i + 1)^2 \right) = \sum_{k=1}^{20} (2x_k - 3 \cdot 5) = 2 \cdot \sum_{k=1}^{20} x_k - 15 \cdot 20 = -14 \cdot 20 = -280$$

a)

	x_1	x_2	x_3	x_4	1
	(1)	0	1	-2	2
b) Endschema:		(1)	-2	3	-1
•			7	-6	5
					2

Das Glgsyst hat keine Lösung, da r=3 und die letzte Zeile 0=2 ein Widerspruch darstellt!

Lösung 8

also $b_{22} = -3$, $b_{21} = 8$, $b_{12} = 3$ und $b_{11} = -4$

 $B=\left(egin{array}{cc} -4 & 3 \ 8 & -3 \end{array}
ight)$, das gegebene Problem hat genau eine Lösung.

Lösung 9

Endschema:

X	у	Z	1
(2)	3	1	1
	(1)	(2t - 1)	-1
		(1-6t)(1-2t)	3(1-2t)

a) $t
eq \frac{1}{2}$ und $t
eq \frac{1}{6}$, Rang r = 3

$$\left(\begin{array}{c} x\\y\\z \end{array}\right) = \frac{1}{1-6t} \left(\begin{array}{c} -4-3t\\2\\3 \end{array}\right)$$

b) $t = \frac{1}{6}$, letzte Zeile: 0 = 2 ist ein Widerspruch!

c) $t=\frac{1}{2}$, Rang r=2, $z=\mu=$ freier Parameter, y=-1 und $x=2-\frac{\mu}{2}$ und somit

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}, \ \mu \in \mathbb{R}$$

Lösung 10

a)
$$s_a = \sum_{k=1}^{10} \left(k \cdot \sum_{n=1}^{2k} n \right) = \sum_{k=1}^{10} k \cdot \frac{2k(2k+1)}{2} = 2 \cdot \sum_{k=1}^{10} k^3 + \sum_{k=1}^{10} k^2 = 2 \cdot \left(\frac{10 \cdot 11}{2} \right)^2 + \frac{10 \cdot 11 \cdot 21}{6} = 6050 + 385 = 6435$$

b)
$$s_b = \sum_{n=1}^{N} \left((a-1) \cdot \sum_{k=0}^{n-1} a^k \right) = \sum_{n=1}^{N} \left(a^n - 1 \right) = a \cdot \sum_{n=0}^{N-1} a^{n-1} - N = a \cdot \frac{a^N - 1}{a - 1} - N$$

$$\sum_{l=1}^{15} x_l = 20 \qquad \sum_{l=1}^{15} x_l^2 = 25 \quad \text{und damit} \qquad s = \sum_{k=1}^{15} (x_k - 80) = 20 - 15 \cdot 120 = -1780$$

$$s_N = 2 \cdot \sum_{n=1}^{N} \left\{ \frac{2n(2n+1)}{2} - \frac{n(n+1)}{2} \right\} = 3 \cdot \sum_{n=1}^{N} n^2 + \sum_{n=1}^{N} n = N(N+1)^2$$

Lösung 13

$$\sum_{j=1}^{20} x_j = 4 \qquad \sum_{j=1}^{20} x_j^2 = \frac{3}{4} \qquad -3 \cdot \sum_{j=1}^{20} \left(x_j^2 - 2x_j + 1 \right) = -3 \cdot \frac{3}{4} + 6 \cdot 4 - 3 \cdot 20 = -\frac{153}{4}$$

$$s = 2 \cdot \sum_{k=1}^{20} x_k - 20 \cdot \frac{153}{4} = 2 \cdot 4 - 5 \cdot 153 = -757$$