Name:

Aufgabe 1

a) $\sin\left(\frac{3x}{2}-2\right)=\frac{\sqrt{3}}{2}$, alle Lösungen, exakt.

b) Drücken Sie $\cos(4x)$ allein mit $\cos(x)$ aus.

Aufgabe 2

Bestimmen Sie den Abstand folgender windschiefer Geraden g und h

$$g: \vec{r} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \mu \begin{pmatrix} 1\\4\\-3 \end{pmatrix} \qquad h = h(A,B),$$

wobei A(-2,0,4) und B(-1,0,2). (Abstand *inklusive* der Fusspunkte).

Aufgabe 3

Gegeben ist die Matrix

$$A(\alpha) = \left(\begin{array}{cccc} 1 & 2 & 3 & 1\\ 1 & 2 & 7 & 8\\ 2 & 3 & \alpha & 7\\ 1 & 3 & 4 & 0 \end{array}\right)$$

mit einem Parameter α . Die Determinante von $A(\alpha)$ wird mit $d(\alpha)$ bezeichnet.

a) Bestimmen Sie $d(\alpha)$ in Abhängigkeit von α aus den beiden bekannten Werten d(-1)=58 und d(3)=30.

b) Für welche $\alpha \in \mathbb{R}$ ist $A(\alpha)$ invertierbar?

c) Für welche $\alpha \in \mathbb{R}$ ist ein lineares Gleichungssystem mit $A(\alpha)$ als Koeffizientenmatrix eindeutig lösbar?

Aufgabe 4

Lösen Sie folgende goniometrische Gleichungen:

a)
$$6\sin(x) + 1 = \frac{1}{\sin(x)}$$

b)
$$\cos(2u) = 1 - \tan(u)$$

Aufgabe 5

a) Bestimmen Sie die Kondition des Problems

$$H(x) = \sqrt{2x^2 - 3} - \sqrt{2x^2 - 1} \label{eq:hamiltonian}$$
 für $|x|$ gross.

b) Vermeiden Sie, falls möglich, die Auslöschung in (1).

Aufgabe 6

Gegeben ist ein lineares Gleichungssystem Cx=d mit der Matrix $C=\begin{pmatrix} 2 & 3 \\ 10^{-5} & 10^{-5} \end{pmatrix}$ und der rechten Seite $d=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Die exakte Lösung ist $x_e=\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

- a) Bestimmen Sie die Kondition $\kappa(C)$ von C in der $\|\dots\|_{\infty}$ Norm.
- b) Betrachten Sie nun für kleine positive ε die folgenden rechten Seiten:

b1)
$$\hat{d}_1=\left(egin{array}{c} 1+arepsilon \ 0 \end{array}
ight)$$
 b2) $\hat{d}_2=\left(egin{array}{c} 1 \ arepsilon \end{array}
ight)$

und berechnen Sie die entsprechenden Lösungen \hat{x}_1 und \hat{x}_2 .

c) Bestimmen Sie für die beiden Lösungen aus b) die relativen Fehler $\|\delta\hat{x}_1\|_{\infty}$ und $\|\delta\hat{x}_2\|_{\infty}$. Vergleichen Sie diese relativen Fehler mit der theoretisch hergeleiteten Abschätzung. Interpretation?

a) $\frac{3x}{2} - 2 = \frac{\pi}{3} + k 2\pi \implies x_k = \left(\frac{2\pi}{9} + \frac{4}{3}\right) + k \frac{4\pi}{3}$

$$\frac{3x}{2} - 2 = \frac{2\pi}{3} + k \, 2\pi \Longrightarrow x_k = \left(\frac{4\pi}{9} + \frac{4}{3}\right) + k \, \frac{4\pi}{3}$$

b)
$$\cos(4x) = 2 \cdot \cos^2(2x) - 1 = 2 \cdot (2\cos^{(x)} - 1)^2 - 1 = 8\cos^4(x) - 8\cos^2(x) + 1$$

Lösung 2

Die Ursprungsgerade h wird von $\overrightarrow{AB} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ aufgespannt. Transversale t von g und h, die gleichzeitig auf beiden Geraden senkrecht steht, d.h. für den Richtungsvektor

$$\vec{a}$$
 von t muss gelten: $\vec{a} \perp \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$ und $\vec{a} \perp \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \Longrightarrow \vec{a} = \mu \begin{pmatrix} 8 \\ 1 \\ 4 \end{pmatrix}$

Ebene $E_1 = E_1(h, \vec{a}): \ 2x - 20y + z = 0$ und damit $P = g \cap E_1 = (\frac{7}{9}, \frac{1}{9}, \frac{6}{9})$ ein erster Fusspunkt von t $\Rightarrow t: \ \overrightarrow{r} = \overrightarrow{0P} + \mu \overrightarrow{a} \ \text{und damit} \ Q = t \cap h = (-\tfrac{1}{9}, 0, \tfrac{2}{9}) \ \text{der zweite Fusspunkt von} \ t.$

$$d = |\overrightarrow{PQ}| = |\frac{1}{9} \begin{pmatrix} -8 \\ -1 \\ -4 \end{pmatrix}| = \frac{\sqrt{81}}{9} = 1$$

a)
$$d(\alpha)=m\alpha+q$$
, linear in α .
$$\begin{cases} d(-1)=58=-m+q\\ d(3)=80=3m+q \end{cases} \implies m=-7 \quad q=51$$
 also: $d(\alpha)=51-7\alpha$

b)
$$d(\alpha) \neq 0 \Longleftrightarrow \alpha \neq \frac{51}{7}$$

c)
$$d(\alpha) \neq 0 \iff \alpha \neq \frac{51}{7}$$

a)
$$6u^2 + u - 1 = 0$$
, $u := \sin(x)$, $u_{1.2} = \begin{cases} \frac{1}{3} \\ -\frac{1}{2} \end{cases}$

$$\sin(x) = \frac{1}{3} : \begin{cases} x_k = \varphi + k 2\pi \\ x_k = (\pi - \varphi) + k 2\pi \end{cases} \qquad \varphi = \arcsin(\frac{1}{3})$$

$$\sin(x) = -\frac{1}{2} : \begin{cases} x_k = \frac{7\pi}{6} + k 2\pi \\ x_k = \frac{11\pi}{6} + k 2\pi \end{cases}$$

b) $\tan(u) = 1 : u_k = \frac{\pi}{4} + k \pi \text{ oder } \sin(u) = 0 : u_k = k \pi$

Lösung 5

$$H'(x) = \frac{2x(\sqrt{2x^2 - 1} - \sqrt{2x^2 - 3})}{\sqrt{2x^2 - 3}\sqrt{2x^2 - 1}}$$

a)

$$\left| \frac{x}{H(x)} \cdot \frac{2x\left(\sqrt{2x^2 - 1} - \sqrt{2x^2 - 3}\right)}{\sqrt{2x^2 - 3}\sqrt{2x^2 - 1}} \right| = \left| \frac{-2x^2}{\sqrt{2x^2 - 3}\sqrt{2x^2 - 1}} \right| = \left| \frac{1}{\sqrt{1 - \frac{3}{2x^2}}\sqrt{1 - \frac{1}{2x^2}}} \right|$$

und damit

$$\kappa_H(x) = \lim_{|x| \to \infty} \left| \frac{x \cdot H'(x)}{H(x)} \right| = 1,$$

d.h. die Auslöschung kann vermieden werden.

b) Ohne Auslöschung: $H(x)=-\frac{2}{\sqrt{2x^2-3}+\sqrt{2x^2-1}}$ nach Erweiterung mit $\sqrt{2x^2-3}+\sqrt{2x^2-1}$

Lösung 6

$$C^{-1} = (-10^5) \begin{pmatrix} 10^{-5} & -3 \\ -10^{-5} & 2 \end{pmatrix}$$

a) Zeilenmaximum: $\|C\|_{\infty}=5$ und $\|C^{-1}\|_{\infty}=1+3\cdot 10^5$ und damit $\kappa(C)=5\cdot (1+3\cdot 10^5)$

$$\begin{array}{ll} \text{b)} & \text{b1)} & \hat{x}_1 = C^{-1}\hat{d}_1 = (1+\varepsilon) \left(\begin{array}{c} -1 \\ 1 \end{array} \right) = x_1 + \Delta x_1 = \left(\begin{array}{c} -1 \\ 1 \end{array} \right) + \varepsilon \left(\begin{array}{c} -1 \\ 1 \end{array} \right) \\ & \text{b2)} & \hat{x}_2 = C^{-1}\hat{d}_2 = \left(\begin{array}{c} -1 + 3\varepsilon 10^5 \\ 1 - 2\varepsilon 10^5 \end{array} \right) = x_2 + \Delta x_2 = \left(\begin{array}{c} -1 \\ 1 \end{array} \right) + \varepsilon 10^5 \left(\begin{array}{c} 3 \\ -2 \end{array} \right) \end{array}$$

c) $||x||_{\infty} = \max_{1 \le k \le 2} |x_k|$, absolut grösste Komponente.

$$\begin{split} \|\delta\hat{x}_1\|_\infty &= \tfrac{\|\Delta x_1\|}{\|x_1\|} = \varepsilon \text{, und } \|\delta\hat{d}_1\|_\infty = \tfrac{\|\Delta d_1\|}{\|d_1\|} = \varepsilon \text{, da } \hat{d}_1 = d_1 + \Delta d_1 = \left(\begin{array}{c} 1\\0 \end{array}\right) + \left(\begin{array}{c} \varepsilon\\0 \end{array}\right) \\ \|\delta\hat{x}_2\|_\infty &= \tfrac{\|\Delta x_2\|}{\|x_2\|} = 3\,\varepsilon\,10^5 \text{, und } \|\delta\hat{d}_2\|_\infty = \tfrac{\|\Delta d_2\|}{\|d_2\|} = \varepsilon \text{, da } \hat{d}_2 = d_2 + \Delta d_2 = \left(\begin{array}{c} 1\\0 \end{array}\right) + \left(\begin{array}{c} 0\\\varepsilon \end{array}\right) \end{split}$$

theoretische Schranke: $\|\delta\hat{x}_1\|_{\infty} \leq \kappa(A) \cdot \|\delta\hat{b}_1\|_{\infty}$ ist zu pessimistisch, sie wird nicht angenommen. $\|\delta\hat{x}_2\|_{\infty} \leq \kappa(A) \cdot \|\delta\hat{b}_2\|_{\infty}$ hingegen ist realistisch, da der relative Fehler von \hat{x}_2 von $O(10^5)$.

Aufgabe 7

Gegeben ist die Matrix

$$A = \left(\begin{array}{ccccc} 0 & \lambda - 2 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & \lambda + 1\\ \lambda + 7 & 0 & 0 & 0 & 0\\ 0 & 0 & \lambda^2 + 1 & 0 & 0\\ 0 & 0 & 0 & \lambda - 1 & 1 \end{array}\right)$$

- a) Bestimmen Sie die Determinante von Ain Abhängigkeit von λ .
- b) Für welche Werte von $\lambda \in \mathbb{R}$ gilt det(A) = 0?

Aufgabe 8

Aufgabe 9

 $\text{Gegeben: Gerade }g:\ \vec{r}=\left(\begin{array}{c}1\\1\\1\end{array}\right)+\mu\left(\begin{array}{c}-2\\1\\2\end{array}\right)\text{, sowie die Punkte }A(0,3,9)\text{, }B(-2,5,6)\text{ und }C(-4,7,3).$

Gesucht sind:

- ullet Schwerpunkt S des Dreiecks ABC.
- Gerade $g_1 \parallel g$ durch S.
- Länge der zwischen π_1 und π_2 liegenden Strecke auf g_1 .
- a) Mit dem Gauss-Algorithmus: Endschema:

d.h. der Rang r=3, d.h. die drei Vektoren sind linear unabhängig.

b)
$$\vec{b}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \qquad \vec{b}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad \vec{b}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

- a) i)
 - ii)
- b)

Gauss-Algorithmus

Schema nach einem Schritten:

x_1	x_2	x_3	1
(2)	a	6	4
	-2	4	3
	$4 - \frac{a^2}{2}$	-2a	1-2a

Schema nach zwei Schritten:

x_1	x_2	x_3	1
(2)	\underline{a}	6	4
	(-2)	4	3
		$8 - 2a - a^2$	$7 - 2a - \frac{3}{4}a^2$

- a)
- b)
- c)
- d)

Lösung 9

b)
$$\overrightarrow{0A'} = \overrightarrow{0A} + 2\overrightarrow{AF} \Longrightarrow A'(-6, 5, 3)$$

Lösung 10

a)
$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & \frac{2}{5} & 1 \end{pmatrix} \qquad R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & \frac{27}{5} \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

b) erster Schritt:
$$Lc = Pb$$
, wobei $Pb = \begin{pmatrix} 0 \\ 0 \\ 27 \end{pmatrix} \Longrightarrow c = \begin{pmatrix} 0 \\ 0 \\ 27 \end{pmatrix}$ zweiter Schritt: $Rc = x \Longrightarrow x = \begin{pmatrix} 7 \\ 6 \\ 5 \end{pmatrix}$

a)
$$g: \vec{r} = \overrightarrow{0P_0} + \mu \vec{a}$$

$$E_1: \ \overrightarrow{r} = \overrightarrow{0A} + \alpha \overrightarrow{a} + \beta \overrightarrow{AB} = \left(\begin{array}{c} 3 \\ 2 \\ -3 \end{array} \right) + \alpha \left(\begin{array}{c} -3 \\ 1 \\ 2 \end{array} \right) + \beta \left(\begin{array}{c} 0 \\ -1 \\ 2 \end{array} \right) \text{ und damit}$$

$$E_1: 4x + 6y + 3z = 15$$

b) $V=\frac{h}{3}\,G$: Schnittpunkte der Ebene E_1 mit den Koordinatenachsen und z=-3 liefert die Punkte (0,0,-3), (0,0,5), (6,0,-3), (0,4,-3) und somit h=8 und G=12 woraus V=32 resultiert.

alte Lösungen

Lösung 12

a)

		x_1	x_2	x_3	x_4	1
		(1)	0	1	-2	2
b)	Endschema:		(1)	-2	3	-1
				(7)	-6	5
						2

Das Glgsyst hat keine Lösung, da r=3 und die letzte Zeile 0=2 ein Widerspruch darstellt!

Lösung 13

also $b_{22} = -3$, $b_{21} = 8$, $b_{12} = 3$ und $b_{11} = -4$

 $B=\left(egin{array}{cc} -4 & 3 \ 8 & -3 \end{array}
ight)$, das gegebene Problem hat genau eine Lösung.

Lösung 14

a) $t
eq \frac{1}{2}$ und $t
eq \frac{1}{6}$, Rang r = 3

$$\left(\begin{array}{c} x\\y\\z \end{array}\right) = \frac{1}{1-6t} \left(\begin{array}{c} -4-3t\\2\\3 \end{array}\right)$$

b) $t = \frac{1}{6}$, letzte Zeile: 0 = 2 ist ein Widerspruch!

c) $t=\frac{1}{2}$, Rang r=2, $z=\mu=$ freier Parameter, y=-1 und $x=2-\frac{\mu}{2}$ und somit

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}, \ \mu \in \mathbb{R}$$

a)
$$s_a = \sum_{k=1}^{10} \left(k \cdot \sum_{n=1}^{2k} n \right) = \sum_{k=1}^{10} k \cdot \frac{2k(2k+1)}{2} = 2 \cdot \sum_{k=1}^{10} k^3 + \sum_{k=1}^{10} k^2 = 2 \cdot \left(\frac{10 \cdot 11}{2} \right)^2 + \frac{10 \cdot 11 \cdot 21}{6} = 6050 + 385 = 6435$$

b)
$$s_b = \sum_{n=1}^{N} \left((a-1) \cdot \sum_{k=0}^{n-1} a^k \right) = \sum_{n=1}^{N} \left(a^n - 1 \right) = a \cdot \sum_{n=0}^{N-1} a^{n-1} - N = a \cdot \frac{a^N - 1}{a - 1} - N$$

$$\sum_{l=1}^{15} x_l = 20 \qquad \sum_{l=1}^{15} x_l^2 = 25 \quad \text{und damit} \qquad s = \sum_{k=1}^{15} (x_k - 80) = 20 - 15 \cdot 120 = -1780$$

$$s_N = 2 \cdot \sum_{n=1}^{N} \left\{ \frac{2n(2n+1)}{2} - \frac{n(n+1)}{2} \right\} = 3 \cdot \sum_{n=1}^{N} n^2 + \sum_{n=1}^{N} n = N(N+1)^2$$

$$\sum_{j=1}^{20} x_j = 4 \qquad \sum_{j=1}^{20} x_j^2 = \frac{3}{4} \qquad -3 \cdot \sum_{j=1}^{20} \left(x_j^2 - 2x_j + 1 \right) = -3 \cdot \frac{3}{4} + 6 \cdot 4 - 3 \cdot 20 = -\frac{153}{4}$$
$$s = 2 \cdot \sum_{k=1}^{20} x_k - 20 \cdot \frac{153}{4} = 2 \cdot 4 - 5 \cdot 153 = -757$$