Aufgabe 1

Berechnen Sie die komplexen Fourierkoeffizienten der periodischen Funktion $f(x) = |\cos(3x)|$.

Wie lautet die Fourier-Entwicklung bis zum vierten Glied in reeller Schreibweise?

Aufgabe 2

Gegeben sie die Funktion $f(x, y) = y^4 - 3xy^2 + x^3$.

- a) Berechnen Sie die lokalen Extreme dieser Funktion.
- b) Welche Extremwerte hat die gegebene Funktion auf dem Einheitskreis? (Tipp: entweder Kreis parametrisieren oder Lagrange-Multiplikator)

Aufgabe 3

Betrachten Sie das AWP $\ddot{y} - y = 0$ mit y(0) = 1 und $\dot{y}(0) = 0$.

- a) Schreiben Sie das gegebene AWP als System von Dgl. 1-ter Ordnung.
- b) Bestimmen Sie die exakte Lösung
- c) Trapezmethode mit h = 0.2, ein Schritt von Hand
- d) Methode von Heun bis zur Zeit t = 0.2 (2 Schritte mit h = 0.1)
- e) Vergleichen Sie die approximativen Werte mit den exakten Werten bei t = 0.2. Geben Sie für beide Verfahren sowohl den absoluten als auch den relativen Fehler an (Verwenden Sie dabei die gewöhnliche Euklid'sche Vektornorm)

Lösungen:

Aufgabe 3

- a) $x_1 = y$ und $x_2 = \dot{y}$. Mit dieser Substitution erhalten wir: $\dot{x} = Ax$, wobei $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ und $x \in \mathbb{R}^2$ mit den AB $x(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- b) Exakte Lösung: $x(t) = \begin{pmatrix} \cosh(t) \\ \sinh(t) \end{pmatrix}$, $0 \le t$

c)
$$h = 0.2$$

$$x(h) = (I_2 - \frac{h}{2}A)^{-1}(I_2 + \frac{h}{2}A)x(0) = \frac{1}{1 - \frac{h^2}{4}} \begin{pmatrix} 1 + \frac{h^2}{4} & h \\ h & 1 + \frac{h^2}{4} \end{pmatrix} x(0) = \begin{pmatrix} 1.02020202... \\ 0.2020202... \end{pmatrix}$$

d)
$$h = 0.1$$
 $x(h) = (I_2 + hA + \frac{h^2}{2}A^2)x(0) = \begin{pmatrix} 1 + \frac{h^2}{2} & h \\ h & 1 + \frac{h^2}{2} \end{pmatrix}x(0),$
 $x(2h) = (I_2 + hA + \frac{h^2}{2}A^2)x(h) = \begin{pmatrix} 1 + \frac{h^2}{2} & h \\ h & 1 + \frac{h^2}{2} \end{pmatrix}x(h) = \begin{pmatrix} (1 + \frac{h^2}{2})^2 + h^2 \\ 2h(1 + \frac{h^2}{2}) \end{pmatrix} = \begin{pmatrix} 1.020025 \\ 0.201000 \end{pmatrix}$

e)
$$h = 0.2$$
: exakte Lösung: $x(0.2) = \begin{pmatrix} 1.020066755619076 \\ 0.2013360025410940 \end{pmatrix}$

absolute Fehler: absHeun = 3.385871222389890e-004

absTrapez = 6.974420654153497e-004

relative Fehler: relHeun = 3.256439784347860e-004

relTrapez = 6.707810013793715e-004

Bem: Sowohl die absoluten als auch die relativen Fehler sind bei der Methode von Heun nur halb so gross, die Zehnerpotenzen stimmen überein.